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Exact similarity solutions to some nonlinear diffusion equations 

J R King 
Department of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, 
UK 

Received 22 March 1990, in final form 21 May 1990 

Abstract. We give new closed-form similarity solutions to N-dimensional radially sym- 
metric nonlinear diffusion equations with power-law and exponential diffusivities. These 
solutions are generalisations of known similarity solutions. 

1. Introduction 

This paper is concerned with N-dimensional radially symmetric nonlinear diffusion 
equations of the form 

(when N = 1 we shall sometimes write x in place of r ) .  In particular, we shall consider 
the cases D ( c )  = cn, so that 

and D ( c )  = e‘, so that 

Equations of the form (1.2), especially, have a large number of applications, for 
both n > 0 (‘slow’ diffusion) and n < 0 (‘fast’ diffusion); see, for example, [l]  and [2]. 
Large numbers of exact similarity solutions to (1.2) are already known (most have 
been listed in [3], where some new forms were also determined; other recent results 
were given in [4]). 

Here we shall determine new results by generalising known instantaneous source 
and dipole solutions to (1.2), after which we determine the corresponding solutions 
to (1.3). We then give some extensions to these results, and we conclude with some 
discussion. 

2. Instantaneous source-type solutions 

2.1. Introduction 

The instantaneous source solution to (1.2) due to Barenblatt [5] and Pattle [6] takes 
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3682 J R King 

the form, for n f -21 N, of 

) - N / (  n N + 2 )  f ( r , /  t l / ( n N + 2 )  c = t  

while for n = - 2 / N  we may write 

c = e-""f( r/eA') 

where A is an arbitrary constant. 
These forms of similarity variable are chosen so that the total mass (? defined by 

Q = lom rN- ' c  d r  

is fixed in time when the integral exists. 
Substituting ( 2 . 1 )  or ( 2 . 2 )  into ( 1 . 2 )  gives the ordinary differential equation 

where A = l / ( n N + 2 )  corresponds to ( 2 . 1 ) .  Integrating ( 2 . 3 )  gives 

( 2 . 4 )  

where here and throughout the remainder a is an arbitrary constant. The usual 
instantaneous source solution corresponds to a = 0 and then either f = 0 or 

f = p e - . \ 1 2 / 2  n = O  

where here and henceforth p is a further arbitrary constant. 

the cases (a ) - ( c ) ) :  
The corresponding solutions for c are best written in the form (assuming t > 0 in 

( a ) n > O  

= O  2 a t l / ( n N + 2 )  

where p = a2.  This solution for 'slow' diffusion has compact support and is the form 
given in [ 5 ]  and [ 6 ] .  

(b) n = 0 
= A ~ - N / Z  e-r2/41 

where p = A. 
(c) O>n> -2," 

where p = -a2 .  
(d) n = -2/N 

- N I 2  

c = e-'"[ + (a'+-$)] 



Some nonlinear difusion equations 3683 

where p = -a2 .  In contrast to the previous cases the total mass Q associated with this 
solution is unbounded. 

(e) n < -2/N 

= O  t 2 0 .  

The total mass associated with the solution for t < 0 is unbounded, but c vanishes 
everywhere at t = 0. This is a consequence of the way the diffusivity cn  blows up as 
c + 0. We note that (1.1) is invariant under translations of t, so that the origin of time 
can be chosen arbitrarily. 

The solutions for the cases ( a ) - ( c )  are well known and have found wide physical 
application. 

We now return to (2 .4)  and obtain new solutions by considering the case a # 0 for 
particular values of n and N. 

2.2. The case n = - 1  

Equation (2 .4 )  is then a Bernoulli equation that we solve by writing f =  l / g  to give 

When a # 0, N # 2 ,  the solution to ( 2 . 5 )  is given by 

where rl0 is 8 .I arbitrary constant. 
For N = 1 we have 

When ,q = 0 this gives a travelling wave solution 

c =  a 2 / [ A ( a x + t ) ] .  

For N = 3  

where 

is the exponential integral. 
Finally, for N = 2 ,  

A 
2 - a  

g=pqQ+--$ i f a f 2  

and 

g = pv2+Aq2 In 17 if a = 2 .  



3684 J R King 

2.3. The case n = -2/N 

Here (2.4) is invariant under the rescaling group q + pq, f+ p - N f ;  the case n = -2, 
N = 1 has been solved in [7]. The substitutions 

f = 7 r N g  ( = l n q  

transform (2.4) with n = -2/ N into 

so that g is given by 

1+2/N 6 dg  
Ng - ag2” - Ag 

where go is an arbitrary constant. 
Corresponding to the case 

Ngo - agi/N - AgA+2/N = 0 

we have the solution 

g = go 

which gives the steady state solution 

c = g,r-N.  

When N = 2 we have n = -1, which is included in the case given in section 2.2 above. 

2.4. The case n = - f 
If n = - $  then we write f =  g2 to obtain the Riccati equation 

which we transform to a linear equation by the substitution 

2 d 9  
AT9 d77 

g=-- 

to give 

(2.7) 

N = 4  corresponds to the case given in section 2.3 and equation (2.7) is an Euler 
equation; otherwise we write 

to obtain 
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which is a Bessel equation with general solution 

y = A J , ( z ) + B Y , ( z )  

where A and B are arbitrary constants and v = 2/ (4-  N). The general solution to (2.6) 
may then be written in the form: 

3. ‘Dipole’-type solutions 

3.1. Introduction 

We now consider solutions that generalise the one-dimensional dipole solutions given 
for n > O  in [8]. Solutions of this form in higher dimensions were referred to in [3] 
and [4] but few of the details were worked out. The similarity variables are chosen to 
fix 

lom rc d r  

in time (if the integral exists). In one dimension this corresponds to the centre of mass. 
The appropriate similarity solution to (1.2) then takes the form 

1 i f n f l  (3.1) = t-l/(”+l)f ( r/ t1/[2(”+1)1 

with 

if n = - 1  = e-2Al f (r/e“l) (3.2) 
where A is an arbitrary constant. For N = 2 these solutions are the same as those of 
the previous section so we do not discuss N = 2 further. 

For n f -1,  f satisfies the ordinary differential equation 

1 

giving 

-- 1 $f = ?-/ f “-+ df  ( N  -2)  f -+ “ + I  a. 
2 ( n + l )  d s  n + l  (3.3) 

When a = 0 (3.3) is a Bernoulli equation if n f 0 and may be solved in closed form 
to give 

n = O  (3.4) 
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The best form in which to write the solution for c again depends on the values of 
n and N. Since N is positive we may write (omitting the special cases n = 0 and 
n = - 2 /  N ) :  

(a) n > O  

= O  

This solution again has compact support, but 

c + a  as r+O if N > 2 .  

(b) O> n > -2/N 

At a fixed value of 7 = r /  t1/[2("+')1 this blows up as t + 00 if n < -1 (which requires 
N < 2 )  and the corresponding value of r goes to zero while for n > -1 c decays to 
zero for fixed 7 as t + a .  

Solutions (3.5) and (3.6) each have 

= o r ( 2 - N ) / ( n + 1 )  as r+O 

so that in (3.6), c + a  as r+O if N >  2 or if n < -1. Expression (3.6) also has 

c = O(r' /")  as r + c o .  

(c) n < -2/N 

r 
t < O  

= O  t 2 Q .  (3.7) 

This solution extinguishes at finite time ( t  = 0) if n < -1 and blows up at t = 0 if 
0 > n > -1 (which requires N > 2); in the latter case r goes to zero for any fixed value 
of 

= r ( - t ) - l / r 2 h + 1 ) l *  

In (3.7), c blows up as r + 0 if N < 2 or if n > -1. 

We note from (3.4)-(3.6) that since 

= 0 ( ~ ( 2 - N ) / ( n + l )  ) as r + O  
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and, if n 0, 

c = O( r2'n) as r + c o  

the conditions necessary for j: rc d r  to be bounded are that n > -1 and n > $ N  -2. 
For the total mass j: rN-'c d r  to be bounded we need n > -21 N and n > -1. 

Finally, we note that for n = -2/ N the solution (3.4) blows up both at r ]  = 0 and 
at r ]  = p. 

The other special case we need to discuss is n = -1  so that (3.2) holds and 

- A q ' f = r l f - l d f + ( N - 2 ) I n f + a  
d77 

where a is an arbitrary constant. By the rescalings 

77 f+, e-a/(N-2)  77 +, ~ - 1 / 2  em/[2(N-2)1 f 
we may without loss of generality consider 

-72j=  r ] f - ' d f + ( ~ - 2 )  l n j  (3.8) 
d77 

Further progress towards an exact solution does not seem to be possible, although 
(3.8) may be written in a more compact form by introducing 

2- N 

f =exp[ -($E) 41 

1/2  1 / N  
rl=N 5 

to give 

For N = 1, (3.9) is invariant under two discrete transformations 

5+ -5  4+-4  

and 

5+iq  q +i t .  

The first of these corresponds to the invariance of (3.8) under 

r ] + - 7 7  f+f 
which holds for any value of N. 

solution for particular values of n and N. 
We now return to (3.3) with n Z -1 and with a f 0, and determine the general 

3.2. The case n = - 4 
We put f = g2 so that for n = - $  (3.3) becomes the Riccati equation 

dg 2?7-+2(N--2)g+772g2= -a 
d77 
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and writing g = (21 vq) d q / d q  gives 

so that 

where A and B are arbitrary constants and v = 2 -$N. Hence 

(3.10) 

For N =2,  (3.10) is the same as (2.8), while for N = 3 and N = 1 (3.10) can be written 
in a much simpler form. 

For N = 3  

or 

where y = -a and qo is an arbitrary constant. 
For N = 1, (3.10) becomes 

Q 
1 1/2 = 2 - C u ' / 2 q  cot[sa ( q  - To) ]  

or 

Taking a+O with q0=-a3a/12,  (3.11) becomes 

6n  

the usual dipole solution, while if we take qo+ --CO with y > 0, (3.12) becomes 

Y 
g = yl /277  -2 

so that 

4 
C =  

P2(X - 
where p = 21 y ' / * ,  which is a travelling wave solution. 

(3.11) 

(3.12) 



Some nonlinear diffusion equations 3689 

3.3. The case n = f N - 2  

Writing 

g f =  ' ( Z - N ) / ( n + l )  

(3.3) becomes 

(3.13) 

When n = f N - 2 ,  (3.13) is separable and has solution 

where go is an arbitrary constant. 
Corresponding to the case 

go+ ( N  - 2 ) a  = 0 

we have g = go giving the steady state solution 

c = gorL. 

For N = 3 the solution of this section corresponds to that of section 3.2. 

4. D( c )  = exp(c) 

We now turn to equation (1.3). If we write U = e c  then (1.3) becomes 

whereas if we write U = c", (1.2) becomes 

This indicates that (1.3) is related to (1.2) in the limit n + CO. It is therefore of interest 
to determine the solutions of (1.3) that correspond to the limit as n + CO of the solutions 
we have already calculated. For both instantaneous source and dipole solutions the 
relevant limit gives a similarity solution to (1 .3)  of the form 

c = -In t+  f ( r )  

so that 

dr 

and 

and 
ef = - $ r 2 + a + P  In r if N = 2. 

The solution corresponding to N = 1 has already been given in [3,9]. 
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5. Some extensions 

It is well known [ 10,111 that for N = 1 (1.2) may be mapped by a generalised Backlund 
transformation into the closely related equation 

ac a 
aT ax 

We make the transformation in two steps. Writing 

c = av/ax 

the equation 

ac a 
a t  ax 

becomes 

(5.1) 

(5.2) 

We may note in passing that solutions to (5.3) equivalent to those of section 2 (with 
a = 0, [12]) and sections 2 and 3 (with a = 0 and n = 2, [13]) have been directly 
determined apparently without recognising the equivalence to solutions of (5.2). 
Equation (5.3) has a wide class of similarity solutions equivalent to those of (5.2) 
including solutions of the form 

v = t '/2f(x/ t 'I2) 

which is appropriate to constant inlet and outface flow rates for the problem discussed 
in [ 121, which, as mentioned in their discussion, could not be solved by the similarity 
variables introduced by the authors. 

Introducing the hodograph-type transformation 

v = x  x=v T = t  (5.4) 

equation (5.3) becomes 
-2-n 2 a v  

(5.5) 

and writing C = aV/aX = l / c  gives (5.1). 
We now apply this transformation to the solutions of sections 2 and 3 in turn. 
If N =  1,  (2.4) is 

and writing f =  dh/dT gives 

- A T - - = ( - )  dh dh ,+a d2h 
dT dT drl 

and this is equivalent to seeking a similarity solution to (5.3) of the form 

v = - a l n t + h ( x / t * )  A = 1/(N+2) if n # -2 
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and 

o = -at + h(x/eA') 

Applying the transformation (5.4) then gives 

if n = -2.  

V =  T A H ( X + a  In T )  n # -2 

V = e A T H ( X + a T )  n = - 2  

where H ( h (  7)) = 7, and this gives 

C = T A F ( X + a l n T )  n f - 2  

c = eATF(X+ a ~ )  n = - 2  

as a solution to (5.1) where F ( 7 )  = dH(T)/dv. Hence if a = 0 we obtain the separable 
solution of (5.1) which can also be obtained directly (see, for example, [3]). For a # 0 
we have a similarity solution that has an application to dopant diffusion in silicon 
([14]). We may now extend the results of section 2 to obtain some solutions for a # 0. 

( i )  n = -1.  Equations (5.1) and (5 .2)  then take the same form, and the solution 

C = T F ( X + a  In T )  

can be obtained directly from (5.1). We have 

or, writing F = exp( p ) ,  

which integrates to give 

which together with 
dP/dT 

1) -_  dq I,, {aq- in[ ( i+aq) iP i}( i+aq)-a2  

where qo is an arbitrary constant, gives the solution in implicit form. Corresponding 
to p = 0 we have the closed-form solution 

P = P o - 7 / &  

giving the steady state solution 

C =exp(po-X/a) .  

(ii) n = -2. Equation (5.1) is then the linear diffusion equation and writing 

C = e A ' F (  X + a T) 
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gives 

d 2 F  d F  -- , - a - + h F  
d77 d77 

so that C is in general the sum of two travelling wave solutions. 
(iii) n =  -4 .  Equation (5.1) is now 

aC a 
dT dX 

and we are able to construct the general similarity solution of the form 

C =  T213F(X+a In T) 

by using (2.8), which for N =  1 may be written as 

yAi(-(&)’”77)+(l - y)Bi(-(2a)1’377) 
yAi‘(-(2a)’/3r])+ (1 - y)Bi‘(-(2a)1/377) 

where y is an arbitrary constant and Ai and Bi are Airy functions with derivatives Ai‘ 
and Bi’. 

We construct F by writing 

h(77) = g 2 ( d  d77 
TO 

where g( 7) = f ‘ I2( 7) is given by (5.6) and B~ is arbitrary. V is then given by 

h ( $ ) = X + a I n T  (5.7) 

and, differentiating (5.7), 

C = T2/3/g2( V /  T2l3) 

which together with (5.7) is an implicit solution for C. We have thus determined the 
general solution of the equation 

$F+a-=-( dF ~ - 3 / 2 -  d r i ) ,  d F  
drl drl 

We now turn to extensions of the dipole solutions of section 3. For N = 1 we have 
if n Z - 1  

and writing f= dhldr]  gives 

(the constant of integration may be taken to be zero without loss of generality) so that 
n + l  -- 1 T h = - - ( % )  1 -a .  

2 ( n + l )  n + l  d q  (5.9) 
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The constant of integration must be chosen as --cy to make (5.8) and (5.9) consistent 
with (3.3). 

If -cy = O  we have 

h = -2p e-v2I4 n=O 

h = [ - 4 l n ( ~ / p ) ] * / *  n = - 2  

which is equivalent to (3.4). 
The corresponding similarity solution of (5.3) takes the form 

1 z1 = t -1 / [2 (n+1) lh (X/  t1/[2("+1)1 

and maps into the equivalent solution of ( 5 . 5 ) ,  that is 

1 V = T1/[2(n+l)lH(XT1/[2(n+l)l 

where H(h(7)) = 7. 
We may therefore use the solution (3.11) to obtain the general dipole solution to 

as follows (this solution also corresponds to that of section 3.3 with N = 1). 
We calculate h from 

~ 7 )  = J' g2(7) drl 
'0 

with g ( 7 )  given by (3.11). V is then given by 

h (  V /  T) = X T  (5.10) 

so C is determined by (5.10) and 

C = T2/g2( V /  T ) .  

We remark that (5.9) is a Riccati equation for h when n = -3; when n = - $  it is a 
Riccati equation for 7(h) ,  which provides an alternative means for the derivation of 
this solution. More generally, the transformation h + 7, r) + h (which is essentially 
(5.4)) maps (5.9) into another equation of the same type. When n = -2 ,  (5.4) is then 
mapped into a linear equation so that the general solution may be found. 

Finally, if n = -1 we have 

so writing f =dh/d.r, gives 

so that 
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where CY is chosen to be consistent with section 4. This is equivalent to (3.9) with N = 1 
(to obtain (3.9) for N = 1 we write f =  exp( 74) which implies that f =  d q / d v )  and the 
second discrete invariant of (3.9) arises from the well known (for example, [15]) 
discrete invariant of 

"=(?E) -1 du 2 

at  ax2 

given by z) + x and x + v. 

mations described in [9] solutions of (1.2) may be used to give solutions of 
A number of further generalisations in one dimension are possible; by the transfor- 

ax 
ac a 
at ax 

where c1 and c2 are constants, and solutions of (1.3) can be transformed to solutions 
of 

6. Discussion 

We have derived a number of exact solutions of nonlinear diffusion equations, and 
some of these can be used to illustrate a number of unusual effects. In particular, the 
solutions (3.5)-(3.7) have the following behaviour (with n # -2/ N, n # -1, N # 2): 

(I) AS r + o ,  c = ~ ( r ( ~ - ~ ) / ( " + ' )  ). The local behaviour near r = 0 is therefore quasi- 
steady. If N > 2 ,  n > - 1  or N < 2 ,  n < - 1  we have c+co  as r + O + ;  otherwise c + O  a s  
r + 0'. 

at fixed 7, 

(11) For n > -2/ N the behaviour as t + fco is as follows: 

c + o  as t+co if n > - 1  

C + c o  as t+co if n < -1 .  

at fixed r > 0, 

7+0 as t + c o  if n > - 1  

7 + W  as t+co if n < - 1  
and 

if n > - 1  
as t+cO if n < - 1  

- r ( 2 - N ) / ( n + l )  - ( 2 ~ 1 + 4 - - N ) / Z ( n + l ) ~  t as t+co 
C - r 2 / n  t - l / n  

so that at fixed r > 0, c blows up as t + 00 if n < -1 or if n > -1  and N > 2( n + 2), and 
c decays to zero as t + co if n > -1  and N < 2( n + 2). 

at fixed 7, 

(111) For n < -2/ N the behaviour as t + 0- is as follows: 

C + c o  as t + O -  if n > - 1  
c + o  as t+0- if n < - 1  
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at fixed r > 0 ,  

77" as t + 0 -  if n > - 1  

77+0 as t+0- if n < - 1  

and 
c -  r * / " ( - t ) - ' / "  as t + 0 -  if n > - 1  
- r ( 2 - h ' ) / ( n + l ) ( -  t)-(2n+4-N)/2(n+l)2 as t+0- if n < - 1  

so that at fixed r > 0, c blows up as t + 0- if n < - 1  and N < 2( n + 2 ) ,  and c vanishes 
as t + O - i f n > - l o r i f n < - l a n d N > 2 ( n + 2 ) .  

We note that the two cases in which c blows up at fixed 77 are cases in which c + CO 

as r+O+ for all time. They are also the two cases in which the behaviour in time is 
qualitatively different from the solutions of section 2 with (Y = 0; in the latter case c + 0 
as t++m if n > - 2 / N  and c + O  as t + O -  if n < - 2 / N .  In section 2 n = - 2 / N  is the 
important dividing line; in the dipole case n = - 1, N = 2 and N = 2( n + 2 )  are also of 
importance. 

These four dividing lines cross at n = - 1 ,  N = 2 and there is a simple change of 
variable that maps this case into the one-dimensional case. Given 

ac 1 a 
a t  r ar  

we write 
2 u = r  c x = l n  r 

to obtain 

-=-(U-':). au a 
a t  ax 

Hence for n = - 1 the one-dimensional solutions can be mapped into radially symmetric 
solutions and vice versa. In particular, in this paper we have constructed the general 
similarity solutions of the form (in the current notation) 

U = t - I f ( x / t )  U = tf(x + a In t )  

and these map, respectively, to the cylindrically symmetric solutions 

where f ( 7 )  = V-'f(ln 7); the latter case encompasses a whole class of similarity 
solutions. We have also given the first integral of the ordinary differential equation 
corresponding to 

U =) e-2Arf(x/eA') 

and this maps to 

c = r-2 e-*"tf(ln r /e") .  
Finally, we have constructed the general cylindrical similarity solution 

c = eMA'f( r/eA') 
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and this maps to the travelling wave solution 

U =I(, - A t )  

where 

$ ( T I  = e2?f(e?). 

We summarise our results by listing the cases for which we have obtained the most 
general similarity solution of the given form ( A  and CY are arbitrary constants). 

(i) Solutions to equation (1.2) in the following special cases: 

n = -21 N c = e-"'f(r/eA1) 

1 = 1~ - 2 = t-2/(N-2)f( 1/(N-2) 
2 r/ t 

(ii) Solutions to equation (1.3) of the form 

c = -In t +f( r )  section 4. 

N Z 2  

N = l  

N = 2  

N = 2  

N = 2  

N = l  

N = l  

N Z 2  

section 2.4 

section 3.2 

section 2.2 

section 5, (i) 

section 2.2 

section 6 

section 6 

section 5 ,  (iii) 

section 5, (5.10) 

section 2.3 

section 3.3. 

The most general similarity solutions that we have been able to construct for (1.2) 
are all for 'fast' diffusion cases with n = -1, n = -2/N, n = fN  -2, n = - 4  and n = -f. 
While this paper is not concerned with the applications of these solutions it is worth 
pointing out that diffusivities like these arise in a large number of contexts. For example, 
n = - 4  arises in plasma diffusion [ 163 and in the thermal expulsion of liquid helium [ 171. 
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